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Excitable calcium wave propagation in the presence of localized stores
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We study the propagation of calcium waves in the presence of a discrete distribution of calcium stores.
Calcium-induced calcium release coupled to diffusion can be used to produce a criterion for wave propagation
across connected clusters of stores. The velocity of the resulting wave and its relationship to the frequency of
the excitatory stimulus can then be described using percolation theory. Simulations show a homogenous and a
fractal regime and are in agreement with both experiments and theory.

PACS numbeps): 87.18.Pj, 87.16.Yc, 87.16.Ac

[. INTRODUCTION In this paper we study the dynamics of calcium wave
propagation in the presence of such localized calcium pools
Recently there has been considerable interest in the spaith CICR coupled to extended diffusive mechanisms for the
tiotemporal dynamics of calcium inside cells. Calcium isfree calcium dynamics.
known to affect a variety of cell processes, from fertilization In Sec. Il we derive the conditions for calcium wave
and proliferation, to the death of the cgll]. In neurons propagation and more particularly an equation for the veloc-
calcium influences the information processing of neuronalty of the calcium wave. We show how the discrete distribu-
signals, as well as long-term potentiation, the underlyingion of the stored calcium affects this propagation. We use
mechanism believed to be responsible for short-ternpercolation theory to derive scaling estimates for the velocity
memory[2]. of the excitable calcium using the observation that close
Calcium oscillations can be triggered by chemical, elecsimilarities exist to the mechanisms controlling the spread of
trical, or even mechanical stimuli. Stores or pools of calciumforest fires and the spatial transmission of infections in dis-
exist inside the cell and under certain conditions calcium ca@rdered media. We also study how the frequency of stimu-
be released, producing an increase of free cytosolic calciuniation changes the velocity of the waispersion, and the
which contributes to calcium oscillations and propagationcutoff frequency at which the wave does not propagate any
This is due to the free calcium itself triggering the release ofnore. These pieces of information are necessary in order to
stored calcium if it reaches a critical concentration—a pheunderstand how and what type of signals can be transmitted
nomenon known as calcium-induced calcium releasénside a living cell by CICR.
(CICR). Finally in Sec. lll we show simulations based on our
The diffusion of calcium is crucial in transforming these model. They show clearly a fractal and a homogenous re-
temporal calcium oscillations into spatial calcium waves, andgyime of the calcium signal propagation, depending on the
they show many similarities to the excitable chemical wavesglensity of stores and on the amount of stored calcium. The
[3], though the nonlinear mechanisms involved are differentsimulations are similar to experimental results that are ex-
the increasing cytosolic calcium concentration does not trigplained by theory.
ger a chemical reaction but the release of calcium from the
filled stores interacting with the cytosolic calcium wave Il. THEORY

front. )
The stored calcium can be studied from several view- Calcium transport between stores and the cytosol has been

points. Taking a macroscopic point of view, one can define ahvestigated by several group$,8—13, who have identified

smooth local concentration of stored calcifi-7] whose e net_calcium flux from a store as due to three major
temporal and spatial variation can be described by a partidh€chanisms:
differential equation. Such an approach may model the en-

a4 a : . = + +Jef
doplasmic reticulum smoothly filling a cytosolic domain and I=Jeicr(C,C) F Jiea(Cs) F Jrerin ()

the local release of stored calcium at a rateoupled to cr cn cP
diffusion D can lead to waves travelling with velocities =VeicRmom own T KCs™ Vrerin 55>

~ /DK [6]. But what happens when the stores are well sepa- Cs tKg CTHKe P+ Klerin
rated and the release time for the calcium 1/k is much (1)

shorter than the propagation timepr0p~r2/D between

stores, where is a typical distance between discrete storesherec andcg represent the concentration of calcium ions in
In this case the stores will begin to act as nodes in a circuithe cytosol and stored in the pools, respectively. Equatipn
and new phenomena can be expected to appear. In addititvas been used both for compartmented models and for the
to the existence of such spatial inhomogeneities, which act asase in which the stored and cytosolic calcium concentra-
sources of quenched disorder on the dynamics, noise in th@ns are treated in a continuous fashion. In the latter case
form of thermal fluctuations may significantly affect the andcg are calculated by averaging, respectively, the number
propagation of calcium waves in cells. of free and stored calcium ions over a volume that in-
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cludes many stores. In the right-hand side of &g .the first
term describes CICR, witlkK, and K representing the
threshold concentrations of calcium, in the cytosol and in the
stores, respectively, needed for CICR to occur, wiilgcr
is the maximum rate of calcium release, which is obtained
when the bothc and cg are much greater than their corre-
sponding threshold values. The second term represents a lin-
ear leak from the stores into the cytosol and is necessary to
ensure the stability of the store-cytosol system. The last term
represents the active refill of the stor&.s; and K, @ b © time
being the maximum refill rate and the threshold concentra-
tion of cytosolic calcium at which the refill starts, respec- FIG. 1. Simplified excitable dynamics of the store. Continuous
tively. The Michaelis-Menten form of these fluxes, where theline: amount of stored calcium; dashed line: local concentration of
Hill Coefﬁcientsm, n, andp are positive integers representing CytOSO“C calcium near a discrete StO(‘a) Constant rate CICR. The
the cooperativity of the kinetics involved, should be valid CICR and refill _mechanisms are both act_ivated, bu_t CICR domi-
provided we are interested in processes at timescales that d}@t_es.(b) Latent interval. The CICR and_ refill mechanisms are both
large compared to the molecular timescales describing th@ctlvated,.they cgncel gach other,.an !ncregsed local concgntratlon
receptor-ligand dynamics. of cytosolic calcium exnsts_untul_ du_ffuann disperses (i) Refill
Several variations of the CICR dynamics described abov@hase' The CICR meCha.n'sm IS Inactive. The. amount of sto_red
have been investigated. As CICR may be inhibited at Ver)%:alcmm relaxes expone_ntlally tOV\_/ards the eqwhpnum _value dlc_-
high concentrations of cytosolic calcium, Bezprozvanny, ated by the Iegk_an_d refill mechanisms. The storg is exc'ltable again.
Ehrlich and Watra§14,15 have modified Eq(1) to describe The characteristic time scales 7, and 7, are estimated in text.
this aspect of the calcium dynamics. More complex models .
in which the dynamics of the second messenger inositol ni(t):niOJrf do g[ni(9),c(r;,0)], (4)
trisphosphate (1P [16—18 is coupled to that of calcium 0
have also been considered. The essential features in Eq.
(1)—specifically excitability and calcium oscillations—are, wherec,(r) andn? are the, respective, initial values adds
however, also present in these models and in this paper wie dimensionality of the domain.
will use Eq. (1) as our starting point for investigating the  Though general, the solution above is fairly intractable
e_ffect of spatial localization of stores on calcium propaga-due to the coupling betweean(r; ,t) andn;(t), described by
tion. g. Using a less complicated, yet biologically intuitive model
Here we study the manner in which the distribution andfor the store, one can obtain a functigsimpler than the one
properties of a set of discrete stores affects the propagatiaflescribed by Eq(1), and thus a piecewise uncoupled, inte-
of calcium signals. For a given distribution of stores, thegrable system in Eq4). Such a form is sufficient for our
qoncentration of free calcium ions obeys the diffusion equapurposes as our interest lies in determining if and when a
tion specific store is involved in CICR as a result of a given
initial stimulus. In this manner we obtain an alternate de-
scription of the wave propagation, more useful in construct-
ing chemical networks.
Essentially each store can be at any instant in one of the

with the stores acting as point sourc@.is the effective  following three stateg¢see Fig. 1 (a) the CICR state: ifc

diffusion coefficient that in general includes buffering of the >K¢ and ni>n¢,=Ks/Ns, CICR dominates and the store
cytosolic calcium. The numben;(t) of calcium ions inside releases at a constant rate Ve cr/Ns; (b) the latent state:

ac(r,t)
at

=DVZc(r,t), 2)

the storei located at positiom; is given by if n;=<n,, andc>K,, CICR is no longer dominant, but only
balances the refill mechanism, thgis-0; (c) the refill state:

dn;(t) if Kietin<c<K, the refill dominates as CICR is inactivated,
T=g[ni(t),c(ri . (3 the leak and refill will eventually balance the refill ag

—Nmax (Nmayx iS the maximum number of calcium ions that
) ) , , the store can hold in this stateg= —V,¢si INs+Kn;. The
The functiong describes the integrated flux of calcium be- ¢,ction g obtained from this three-state model corresponds
tween the store and the cytod@ICR, refill, leak; an ana- 5 the high cooperativity limit of the CICR and refill mecha-
lytical expression fog can be obtained from E@l) observ- nisms, obtained for large Hill coefficientsn(n,p>1).

ing thatcs=n;Ns, whereNs is the local volume density of  gjgyre 1 shows the excitable behavior of the stored cal-
stores. _ cjum and of the cytosolic calcium near the store as a result of
In the absence of boundaries the coupled system formegy eyteral excitatiolocal stimulus or increase of the cy-
by Egs.(2) and(3) can be formally solved: tosolic calcium: a store in the refill state changes its state to
the CICR state as reache¥k., then to the latent state as
c(r,t)=co(r) drops unden,,, then back again to the refill state asalls
2 underK_..
+2 Jtda gini(6),c(r.0)] exp( —(r=r ) There are three time scales, 7;, and 7, associated with
T Jo [4wdD(t—6)]¥2 "\ 4dD(t—0))’ the CICR, latent, and refill states, respectively. The time
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can be estimated from the period during which CICR isThe propagation condition above becomes more stringent as
dominant,r; describes how long the store stays in the latentr increases, or as the CICR rate decredses Eq.(5)].

state, andr, approximates the time necessary for the pool to From this point on we will consider only the instanta-
refill completely. Estimates of these three time scales are neous release limit case£0). The equality in Eq(9) de-

_ nivoNs. 1

,T 5
Voo D ®

ni,O 2/d 1
T "V ; T~

K, K’

wheren; o represents the number of stored calcium ions at

the moment when the stimulation occu¢beginning of

fines the minimum amount of calcium, whose release will
result in an excitation of sitg

2mre d/2
) riK.,

ni,min:<T (10

CICR). In generaln; o depends on the recent history of the and also the range of storewhich is the maximum distance
store (i.e., how long the store has been in the refill statedt which the release at storewill trigger other stores to
before the stimulation evenand can differ between succes- 'elease:

sive excitations; for stores that have been in the refill state

for a long timen; y~np,x. The estimate for can be ob-

tained from the condition that the released calcium is spread

(11)

Mmax=

d 1/2 & 1/d
2me Ke)

by diffusion until the calcium concentration near the store

drops under the thresholg, .

Now consider consecutive stimulations of sitand let us

Based on this model of the store dynamics we can obtaihalyze the response of sjtas a function of the time period

a criterion as to whether propagation between a pair of stor

daetween two successive stimuli. We assume that the signal

results in the second store being triggered into the CICFRropagates at least when the sitis completely filled (i
state. We can regard the wave as an avalanche of such elzNmay. Of in other words thah,, satisfies the propaga-

ementary propagations between nearby stores.
Thus the release of calcium by poosttarts att=0 and

tion criterion for the pair of stores considered. In the opposite
case the stimulus will never propagate to gitéd second

any timet> 7 the free calcium concentration at stgréo-
cated atr; will be observed to increase by an amount

Ac(r.t)= 20 ("ot amdD(t - 6)] 2 ex _—2)
' 0 4dD(t—0)
Mo :
- rd < (u)>[ut77’ut]' ( )
where t>r, r=|r;—r|, u=4dDt/r?>, and F(u)

= (ru) %2 exp(—1/u). Here we introduced the notation

uz
— | duFu)
Up—UyJy,

(FUDu, u,1= ()

has been filled with at least, ., calcium ions. This occurs
only after a minimal time interval

r]i,minNs

12
Vel 12

tmin= 7

between the two stimuli, withr; estimated from Eq(5).
Interestingly,t;, depends not only on the store distribution
and properties, but also on the recent history represented by
the amount of calcium released by the first stimuiys.

In the limit of low stimulus frequencyf(<tr;i1n), the pool
i is filled completely when each stimulation occurs, and each
stimulus results in propagation to sjteln the opposite limit
(high frequency,f»t;,iln), pool i never spends enough time
in the refill state, and accordingly no stimulus will propagate
to sitej.

to mean an average over the interval in square brackets. The The maximum frequency at which consecutive stimuli

propagation criterion requiredc(r,t) to become greater
than the CICR thresholi . at some time, or using Eq.(6)

Krd
Nig

ma)<F(u)>[ut77,ut]2 (8)
t

This criterion considers only the most important term in the
sum in Eq.(4), thus neglecting the possible combined effect
of several releasing stores. Note that far enough from th

can result in propagations of the excitation between the two
pools can be estimated B[§iln, with n; p=n; min. This is the
case when the stimulation at siteoccurs always exactly
whenn; o=n; min. The amount of calcium in the stoieat
the moment when the stimulation occurs can be calculated as
a function of the amount released by the previous stimulus.
The resulting discrete map has a fixed point for a low fre-
quency of the stimulus, and shows one period doubling bi-
rcation atf~t,.*, when the fixed point becomes unstable.

source the average is over a small interval, reaching the limif '€ period two solution corresponds to the case when con-

for instantaneous release as»o°.
As F(u) reaches its maximum value far=2/d, in the
limit u,<1 the maximum value of the average Btu) in

secutive stimuli find the storifilled with different amounts
of calcium, one higher and the other lower than the fixed
point value. After the release of the higher amount of cal-

Eq. (8) is obtained if the average is taken over the intervalClUm the storéi has to spend more time in the latent state

[2/d—u_/2,2[d+u_/2]. Thus to the lowest order in

di2
1

d5D2,2 -1

4r4

©)

Ni o >(27re
rik, |\ d

before entering the refill state. The lower time spent in the
refill state before the next stimulation allows the store to
refill only up to the minimum value of the period twstablg

solution. After the next stimulus the store spends less time in
the latent state, and thus more time in the refill state, refilling
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ks
h@’ (16)

up to the higher value and so on. If the distance between the
stores andj is chosen appropriately; i, can be tunefisee R~a
Eqg. (10)] between the minimum and the maximum values of

the discrete map’s period two solution. In such excitation, hare the functiom describes the crossover between the two
period, doubling at the receiver stoyewill occur, as only regimes. From the behavior in the fractal regitre)~ h,

every other stimulus at siﬁere_sults in prqpagation to sife for x<1. To obtain the correct exponent tofor the homog-
Now we note that there exists a relationship between cal- . 1.5
ous regime one neeti$x) ~x- 7 for x> 1.

cium wave propagation across a set of discrete stores arfd’ .

percolation. Given a distribution of stores, we can add for- In the homt_)genous regime the wave front travels at a
mally a bond between each pair of stores that meets thEPnstant velocity that can be estimated as
propagation criteriori9). Thus we obtain connected clusters Ip—pdl (A1)
of stores; once the external stimulus triggers one store inside v~ a 5 P~ Pc ) _
a cluster, the excitation will propagate as an avalanche to all thla Pc

the other stores that belong to it.dfis the typical length of

a bond the characteristic time for the excitation to propagaté"ere,v is the exponent that relqtes the correlation length to
across it is given by the difference from the percolation threshqlg:

2 f |p_pc|>_V

a Z~
to"’ - (13) a pC

D

t

to

1- 1/v D

a

17

(18)

In the presence of discrete stores the velocity is proportional
The average number of stores that exist in a volufhg,  to the diffusion coefficienD, in contrast with the case of a
is p=Ngrd ., a dimensionless parameter that summarizesontinuous distribution of stores.
all percolation-related properties of the store distribution. In  If the store triggered initially belongs to a finite cluster the
the limit p<1 there are very few bonds and only very smallwave will die out once it reaches all the sites of the con-
clusters exist. This case is of no interest since no signal canected cluster. As a consequence, below the percolation
propagate. The opposite limit>1 corresponds to the con- threshold only the fractal regime is observed.
tinuous limit, with typical distances between stores much Let us now investigate how the velocity of the wave front
smaller than the rangsg,.,. This situation is described prop- depends on the frequency of the stimulus. At low frequencies
erly by a system of partial differential equations. the refill between successive stimuli is complets;
Here we will investigate the intermediate cgse 1. It =Ny, and all wave fronts are identicéssuming that the
can be argued that in this caae r . If p is greater than initial conditions set by consecutive stimuli are the same
the percolation threshold, an infinite cluster of connected Between consecutive stimuli the stores enter the refill state,
stores exists. Let us consider a stimulus that triggers one dhe amount of stored calcium grows and thus bonds between
its stores into the CICR state. The propagating wave willpairs of stores are added, forming small connected clusters.
behave differently at early times as opposed to late times. AAs more bonds are added the clusters grow and coalesce and
early times the fractal regime is observed. The average dignce the percolation threshold is reached, the correlation
tance to the firing storeémeasured from the initially trig- length starts decreasing from the theoretically infinite value

gered sitg scales with time as at the percolation threshold towards the finite, presumably
small value that corresponds to completely filled stores. As

£\ £\ the frequency increases the time spent in the refill state gets
R~a|— ~§(—) , (14) lower than7, and the correlation length at the moment when

to L the stimulations occur gets larger. Thus, because the expo-

. . . L nent of¢ in Eq. (17) is negative, the velocity decreases with
where¢ is the correlatlon lengtlt is the characterlstlc time frequency in the homogenous regime. As the frequency in-
needed by the signal to propagate to a distance on the ordgfeases further and fewer links have enough time to grow,
of £ (R~¢ att=t,), andv is the graph dimension of the we approach the percolation critical concentration of bonds
percolating clustef19]. The exponent is 0.885 ford=2  (from above and the diverging correlation lengthgets big-
and 0.735 ford= 3. We remark that in both cases< 1, thus  9er than the size of the domain considered. The crossover
in the fractal regim&increases slower than linearly with the from the homogenous to the fractal regime is observed. Fi-
time t. The fractal regime is observed as longRs ¢ ort ~ Nally more links are broken at an even higher frequency, and
<t,. the wave does not propagate any more, as the grown cluster

At late timest>t, (or R>¢) the homogenous regime is of sites falls under the percolation threshold.

observed. In this regime one expe&sandt to be propor-
tional: IIl. SIMULATION RESULTS

To simulate the propagation of the excitation wave, iden-
i_ (15) tical stores of calcium were placed randomly inside a square
te domain. All the stores are initially filled with the same
amount of releasable calcium,,,,. While n,,, has been
The Egs.(14) and (15) can be combined into the scaling changed between different simulations, all the other param-
form eters were kept fixed. The simulation is started by triggering

R~¢



8424 C. S. PENCEA AND H. G. E. HENTSCHEL PRE 62

a store, located close to the center of the domain, into thep, regular circular waves similar to those in Fig. 2 are ob-
CICR state. The current release will cause the stores locataskrved, while if less IRis injected, individualized peaks of
within a distance smaller tham, .4 to release also. The times free calcium concentration travel through the cytosol, resem-
when the new releases will occur are calculated numericallybling the simulation in Fig. 3. IPenhances the release of
generating a list of future events and their correspondingalcium from stores by binding to specific sites and thus
times. The site that releases next is determined by analyzingctivating the calcium release channgl®]. An increased
the list and the clock is advanced up to its release time. ThéP; concentration will increase the number of active stores,
release by the new site adds new elements in the list, and the., stores that can release calcium by CICR and thus con-
process is repeated while the event list is not empty. All tharibute to the propagation of the calcium signal. Since all
sites that release enter the latent state. The moment when tbgres considered in our simulations are active the net effect
latent state ends and the refill state starts is calculated anst adding more IR is to modify the store distribution by
this new event is also added to the list. adding more stores. AN increases the percolation param-
At high stored calcium concentration the correlationeterp increases also, which above the percolation threshold
length¢ is much smaller than the size of the domain and thegeads to a decrease of the correlation lengthn our simu-
homogenous regime is observed. Snapshots of such a typidakions we produced the same effect by modifying.,,
evolution are presented in Fig. 2. After a short transient timewhich in our algorithm is equivalent to modifyinys. The
the wavefront approximates a circle that expands withsimilarity between the pattern change seen experimentally
roughly constant radial velocity. For a smaller amount ofand in the simulation is a strong argument that the propaga-
stored calcium the correlation lengéhgets bigger than the tion of calcium signals is related to percolation.
size of the domain, as the store distribution gets closer to the The same IRcontrolled qualitative behavior has been
percolation threshold, and the fractal regime is observedhown also in simulations performed by Bugrénal. [18],
(Fig. 3. The wavefront is very irregular and consists of puffswhich have considered a model with discrete stores of finite
of calcium release that propagate along individualizedolume and have solved numerically the partial-differential
branches of the connected cluster. The traveling puffs split iequation system that describes the calcium dynamics. Bu-
the branch has a bifurcation and die when they reach the engtim et al. [18] have shown the existence of a criticak IP
of a branch. concentration under which the calcium wave does not propa-
The difference between the two typical patterns shown irgate. The average propagation distance of abortive waves

Figs. 2 and 3 is illustrated in a more quantitative manner indiverges according to a power low near the critical concen-
Fig. 4, where the distance from the origin of the excitation istration of IR, :

plotted as a function of the time when the excitation occurs
at the respective store. Figuréa¥t corresponds to the ho- R~ (T1Palo —[IP.1) 2 19
mogenous regime presented in Fig. 2, with the distance to p~ (LIPslerit —11Ps]) = 19

the firing sites increasing linearly with the time when they _. .
fire. On the other hand, in the fractal regime shown in Fig. 3>Nc€[IPs]cir corresponds to the percolation threshpld

two puffs that have just separated from each other will no@d: as discussed aboyejncreases with the concentration
propagate in general towards the radial direction, moreovep! |Ps+ the equation above should have the same exponent as
they may even move back towards the origin. As a rdsek the correlathn length in Re{.18]. Bugrim et al. obtameq

Fig. 4(b)] the corresponding graph will show individualized from simulationsa~1.74, while the expected theoretical

branches that correspond to different travelling puffs. Thevalue forv is 4/3. _ _
fractal nature of the graph in Fig.(l is reflected in the The critical concentration of Pcan be estimated from

nonlinearity between the linear and chemical distances, antpe condition that the concentration of stores activated Ry IP

ultimately in the graph dimension [see Eq.(14)]. The ve- (iqlfgls theopercolanon thresh?ld,. pFK/TPeh_ Plc. al;[/l[”:t’ﬂ
locity at which the excitation propagates between two giver}._ gt'giﬂg. lpnen(;age?ssume a typical Michaelis-vienten ac-
stores has also been measured as a functiom,Qf. The vatl y i, Y,
two stores were chosen so that they are well inside the do-
main (to avoid finite-size effecis but also far enough from B [1Ps]
each other. Then an excitation wave was started by setting Pactive™ Protal [1p_151P,],”

one of the two stores in the CICR state. The velocity was

measured by recording the time when the second site fire§yhere p, .., is the total concentration of stores, of which
Figure 5 shows hpw the velocity increases with the amounb‘_mive are activated by IP, and[IP;], is the threshold ac-

of releasable calcium. Plateaus of almost constant wave Vgjyation concentratiorithe concentration at which half of all
locity are separated by discontinuities. The dlscontlnmtl_e%toreS are activated by JP Thus the relation between the

reflect the opening of a shorter path as a result of an ingyitica| |p, concentration and the total concentration of stores
creased connectivity when,, ., increases. The velocity in- is

creases slightly inside the plateaus, because a higher amount
of releasable calcium translates into a slightly shorter propa- [IP,]
gation timet, across each bond. This dependence is very [,ps]cm_u (21)

(20

weak and has been neglected in Ef3), however it has Ptotai— Pc’

been taken care of numerically. A similar pattern change is

also seen in fluorescence imaging experiments done on Xegain in qualitative agreement with the results of Bugrim
nopus oocytes injected with P At high concentration of et al.[18].
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FIG. 2. Formation of a circular wave in the homogenous regime. FIG. 3. The fractal regime: irregular wavefront that persists up

The wave is started by exciting one central store=ad. Initially all to the size of the domain. The parameters are as in Fig. 2, except
the stores are filled with the maximum amount of calcimay.  Nmax/Kc=42.7 um? (or p=1.42) andV,efi; /Nmax=15.625 s1.

The stores that have fired in the last 0.5 s are colored in black. Light

gray is used to describe the excitable sifiesthe refill stat¢ and IV. CONCLUSIONS

dark gray to describe the latent sites. Parameters used: size of . . . .

the domain: 240um: number of stores: 16 396N, ../K. In this paper excitable CICR in the presence of localized

=66.7 um? (0r p=2.22): Vyoqi /Nay=10 s L D=10.0um?/s stores has been considered. Simulations for different
" . v vrerti max i . . . .
The imagesa)—(c) are snapshots taken at equal time intervals of 22MOUNts of releasable calcium show clearly a fractal regime
s after the initial excitation in the centefa) transient irregular fOf low stored calcium and a homogenous regime for high
front; (b),(c) circular fronts propagating with constant radial veloc- Stored calcium concentrations, as percolation theory predicts.
ity. The similarity with experimental results strongly suggest that
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FIG. 4. Propagation of the wave fror(e) the homogenous re-
gime; (b) the fractal regime.

percolation related aspects are very important in understan

ing the propagation of calcium signals.
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FIG. 5. Velocity dependence on stored calcium. Other param-
eters as in Fig. 2.

the signal will propagate. A high frequency translates into a
smaller region in which the calcium signal can propagate.
The resulting signaling mechanism becomes very powerful if
instead of a single stimulation one considers the effect of two
or more stimuli that occur in different regions of the cell. A
biologically plausible distribution may have the stores orga-
nized in calcium circuits—well-defined paths of connected
stores forming “wires” that transmit the calcium signals be-
tween different regions of the cell. The nodes of such a cir-
cuit can play an important role in analyzing calcium signals
since this is where different signals interact. We will show in
a following paper how specific distributions of stores in the
vicinity of a node can perform coincidence detection and
&_Iementary logical operations on calcium signals.
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