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Excitable calcium wave propagation in the presence of localized stores

C. S. Pencea and H. G. E. Hentschel
Department of Physics, Emory University, Atlanta, Georgia 30322

~Received 2 May 2000!

We study the propagation of calcium waves in the presence of a discrete distribution of calcium stores.
Calcium-induced calcium release coupled to diffusion can be used to produce a criterion for wave propagation
across connected clusters of stores. The velocity of the resulting wave and its relationship to the frequency of
the excitatory stimulus can then be described using percolation theory. Simulations show a homogenous and a
fractal regime and are in agreement with both experiments and theory.

PACS number~s!: 87.18.Pj, 87.16.Yc, 87.16.Ac
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I. INTRODUCTION

Recently there has been considerable interest in the
tiotemporal dynamics of calcium inside cells. Calcium
known to affect a variety of cell processes, from fertilizati
and proliferation, to the death of the cell@1#. In neurons
calcium influences the information processing of neuro
signals, as well as long-term potentiation, the underly
mechanism believed to be responsible for short-te
memory@2#.

Calcium oscillations can be triggered by chemical, el
trical, or even mechanical stimuli. Stores or pools of calci
exist inside the cell and under certain conditions calcium
be released, producing an increase of free cytosolic calc
which contributes to calcium oscillations and propagati
This is due to the free calcium itself triggering the release
stored calcium if it reaches a critical concentration—a p
nomenon known as calcium-induced calcium rele
~CICR!.

The diffusion of calcium is crucial in transforming thes
temporal calcium oscillations into spatial calcium waves, a
they show many similarities to the excitable chemical wa
@3#, though the nonlinear mechanisms involved are differe
the increasing cytosolic calcium concentration does not t
ger a chemical reaction but the release of calcium from
filled stores interacting with the cytosolic calcium wa
front.

The stored calcium can be studied from several vie
points. Taking a macroscopic point of view, one can defin
smooth local concentration of stored calcium@4–7# whose
temporal and spatial variation can be described by a pa
differential equation. Such an approach may model the
doplasmic reticulum smoothly filling a cytosolic domain a
the local release of stored calcium at a ratek coupled to
diffusion D can lead to waves travelling with velocitiesv
;ADk @6#. But what happens when the stores are well se
rated and the release time for the calciumt;1/k is much
shorter than the propagation timetprop;r 2/D between
stores, wherer is a typical distance between discrete store
In this case the stores will begin to act as nodes in a cir
and new phenomena can be expected to appear. In add
to the existence of such spatial inhomogeneities, which ac
sources of quenched disorder on the dynamics, noise in
form of thermal fluctuations may significantly affect th
propagation of calcium waves in cells.
PRE 621063-651X/2000/62~6!/8420~7!/$15.00
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In this paper we study the dynamics of calcium wa
propagation in the presence of such localized calcium po
with CICR coupled to extended diffusive mechanisms for
free calcium dynamics.

In Sec. II we derive the conditions for calcium wav
propagation and more particularly an equation for the vel
ity of the calcium wave. We show how the discrete distrib
tion of the stored calcium affects this propagation. We u
percolation theory to derive scaling estimates for the veloc
of the excitable calcium using the observation that clo
similarities exist to the mechanisms controlling the spread
forest fires and the spatial transmission of infections in d
ordered media. We also study how the frequency of stim
lation changes the velocity of the wave~dispersion!, and the
cutoff frequency at which the wave does not propagate
more. These pieces of information are necessary in orde
understand how and what type of signals can be transm
inside a living cell by CICR.

Finally in Sec. III we show simulations based on o
model. They show clearly a fractal and a homogenous
gime of the calcium signal propagation, depending on
density of stores and on the amount of stored calcium. T
simulations are similar to experimental results that are
plained by theory.

II. THEORY

Calcium transport between stores and the cytosol has b
investigated by several groups@4,8–13#, who have identified
the net calcium flux from a store as due to three ma
mechanisms:

J5JCICR~c,cs!1Jleak~cs!1Jre f il l ~c!

5VCICR

cs
m

cs
m1Ks

m

cn

cn1Kc
n

1Kcs2Vre f il l

cp

cp1Kre f il l
p

,

~1!

wherec andcs represent the concentration of calcium ions
the cytosol and stored in the pools, respectively. Equation~1!
has been used both for compartmented models and for
case in which the stored and cytosolic calcium concen
tions are treated in a continuous fashion. In the latter casc
andcs are calculated by averaging, respectively, the num
of free and stored calcium ions over a volume that
8420 ©2000 The American Physical Society
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cludes many stores. In the right-hand side of Eq.~1! the first
term describes CICR, withKc and Ks representing the
threshold concentrations of calcium, in the cytosol and in
stores, respectively, needed for CICR to occur, whileVCICR
is the maximum rate of calcium release, which is obtain
when the bothc and cs are much greater than their corr
sponding threshold values. The second term represents a
ear leak from the stores into the cytosol and is necessar
ensure the stability of the store-cytosol system. The last t
represents the active refill of the stores,Vre f il l and Kre f il l
being the maximum refill rate and the threshold concen
tion of cytosolic calcium at which the refill starts, respe
tively. The Michaelis-Menten form of these fluxes, where t
Hill coefficientsm, n, andp are positive integers representin
the cooperativity of the kinetics involved, should be va
provided we are interested in processes at timescales tha
large compared to the molecular timescales describing
receptor-ligand dynamics.

Several variations of the CICR dynamics described ab
have been investigated. As CICR may be inhibited at v
high concentrations of cytosolic calcium, Bezprozvan
Ehrlich and Watras@14,15# have modified Eq.~1! to describe
this aspect of the calcium dynamics. More complex mod
in which the dynamics of the second messenger inos
trisphosphate (IP3) @16–18# is coupled to that of calcium
have also been considered. The essential features in
~1!—specifically excitability and calcium oscillations—ar
however, also present in these models and in this pape
will use Eq. ~1! as our starting point for investigating th
effect of spatial localization of stores on calcium propag
tion.

Here we study the manner in which the distribution a
properties of a set of discrete stores affects the propaga
of calcium signals. For a given distribution of stores, t
concentration of free calcium ions obeys the diffusion eq
tion

]c~r ,t !

]t
5D¹2c~r ,t !, ~2!

with the stores acting as point sources.D is the effective
diffusion coefficient that in general includes buffering of t
cytosolic calcium. The numberni(t) of calcium ions inside
the storei located at positionr i is given by

dni~ t !

dt
5g@ni~ t !,c~r i ,t !#. ~3!

The functiong describes the integrated flux of calcium b
tween the store and the cytosol~CICR, refill, leak!; an ana-
lytical expression forg can be obtained from Eq.~1! observ-
ing thatcs5niNs , whereNs is the local volume density o
stores.

In the absence of boundaries the coupled system for
by Eqs.~2! and ~3! can be formally solved:

c~r ,t !5c0~r !

1(
i
E

0

t

du
g@ni~u!,c~r ,u!#

@4pdD~ t2u!#d/2
expS 2~r2r i !

2

4dD~ t2u! D ,
e

d

lin-
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m

-
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ni~ t !5ni
01E

0

t

du g@ni~u!,c~r i ,u!#, ~4!

wherec0(r ) andni
0 are the, respective, initial values andd is

the dimensionality of the domain.
Though general, the solution above is fairly intractab

due to the coupling betweencs(r i ,t) andni(t), described by
g. Using a less complicated, yet biologically intuitive mod
for the store, one can obtain a functiong simpler than the one
described by Eq.~1!, and thus a piecewise uncoupled, int
grable system in Eq.~4!. Such a form is sufficient for our
purposes as our interest lies in determining if and whe
specific store is involved in CICR as a result of a giv
initial stimulus. In this manner we obtain an alternate d
scription of the wave propagation, more useful in constru
ing chemical networks.

Essentially each store can be at any instant in one of
following three states~see Fig. 1!: ~a! the CICR state: ifc
.Kc and ni.ncr[Ks /Ns , CICR dominates and the stor
releases at a constant rateg5VCICR /Ns ; ~b! the latent state:
if ni&ncr andc.Kc , CICR is no longer dominant, but onl
balances the refill mechanism, thusg'0; ~c! the refill state:
if Kre f il l ,c,Kc the refill dominates as CICR is inactivate
the leak and refill will eventually balance the refill asni
→nmax (nmax is the maximum number of calcium ions th
the store can hold!, in this stateg52Vre f il l /Ns1Kni . The
function g obtained from this three-state model correspon
to the high cooperativity limit of the CICR and refill mecha
nisms, obtained for large Hill coefficients (m,n,p@1).

Figure 1 shows the excitable behavior of the stored c
cium and of the cytosolic calcium near the store as a resu
an external excitation~local stimulus or increase of the cy
tosolic calcium!: a store in the refill state changes its state
the CICR state asc reachesKc , then to the latent state asni
drops underncr , then back again to the refill state asc falls
underKc .

There are three time scales,t, t l , andt r associated with
the CICR, latent, and refill states, respectively. The timet

FIG. 1. Simplified excitable dynamics of the store. Continuo
line: amount of stored calcium; dashed line: local concentration
cytosolic calcium near a discrete store.~a! Constant rate CICR. The
CICR and refill mechanisms are both activated, but CICR do
nates.~b! Latent interval. The CICR and refill mechanisms are bo
activated, they cancel each other, an increased local concentr
of cytosolic calcium exists until diffusion disperses it.~c! Refill
phase. The CICR mechanism is inactive. The amount of sto
calcium relaxes exponentially towards the equilibrium value d
tated by the leak and refill mechanisms. The store is excitable ag
The characteristic time scalest, t l , andt r are estimated in text.
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can be estimated from the period during which CICR
dominant,t l describes how long the store stays in the lat
state, andt r approximates the time necessary for the poo
refill completely. Estimates of these three time scales ar

t;
ni ,0Ns

VCICR
; t l;

1

D S ni ,0

Kc
D 2/d

; t r;
1

K
, ~5!

whereni ,0 represents the number of stored calcium ions
the moment when the stimulation occurs~beginning of
CICR!. In generalni ,0 depends on the recent history of th
store ~i.e., how long the store has been in the refill sta
before the stimulation event! and can differ between succe
sive excitations; for stores that have been in the refill s
for a long timeni ,0'nmax. The estimate fort l can be ob-
tained from the condition that the released calcium is spr
by diffusion until the calcium concentration near the sto
drops under the thresholdKc .

Based on this model of the store dynamics we can ob
a criterion as to whether propagation between a pair of st
results in the second store being triggered into the CI
state. We can regard the wave as an avalanche of suc
ementary propagations between nearby stores.

Thus the release of calcium by pooli starts att50 and
stops att5t. This cytosolic calcium diffuses away and
any time t.t the free calcium concentration at storej lo-
cated atr j will be observed to increase by an amount

Dc~r ,t !5
ni ,0

t E
0

t

du@4pdD~ t2u!#2d/2 expS 2r 2

4dD~ t2u! D
5

ni ,0

r d
^F~u!& [ut2t ,ut]

, ~6!

where t.t, r[ur j2r i u, ut[4dDt/r 2, and F(u)
[(pu)2d/2 exp(21/u). Here we introduced the notation

^F~u!& [u1 ,u2][
1

u22u1
E

u1

u2
du F~u! ~7!

to mean an average over the interval in square brackets.
propagation criterion requiresDc(r ,t) to become greate
than the CICR thresholdKc at some timet, or using Eq.~6!

max
t

^F~u!& [ut2t ,ut]
>

Kcr
d

ni ,0
. ~8!

This criterion considers only the most important term in t
sum in Eq.~4!, thus neglecting the possible combined effe
of several releasing stores. Note that far enough from
source the average is over a small interval, reaching the l
for instantaneous release asr→`.

As F(u) reaches its maximum value foru52/d, in the
limit ut!1 the maximum value of the average ofF(u) in
Eq. ~8! is obtained if the average is taken over the inter
@2/d2ut/2,2/d1ut/2#. Thus to the lowest order int

ni ,0

r dKc

>S 2pe

d D d/2S 12
d5D2t2

4r 4 D 21

. ~9!
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The propagation condition above becomes more stringen
t increases, or as the CICR rate decreases@see Eq.~5!#.

From this point on we will consider only the instant
neous release limit case (t50). The equality in Eq.~9! de-
fines the minimum amount of calcium, whose release w
result in an excitation of sitej

ni ,min5S 2pe

d D d/2

r dKc , ~10!

and also the range of storei, which is the maximum distance
at which the release at storei will trigger other stores to
release:

r max5S d

2peD 1/2S ni

Kc
D 1/d

. ~11!

Now consider consecutive stimulations of sitei and let us
analyze the response of sitej as a function of the time period
between two successive stimuli. We assume that the si
propagates at least when the sitei is completely filled (ni ,0
→nmax), or in other words thatnmax satisfies the propaga
tion criterion for the pair of stores considered. In the oppos
case the stimulus will never propagate to sitej. A second
stimulus at sitei will be transmitted to sitej only if the sitei
has been filled with at leastni ,min calcium ions. This occurs
only after a minimal time interval

tmin5t l1
ni ,minNs

Vre f il l
~12!

between the two stimuli, witht l estimated from Eq.~5!.
Interestingly,tmin depends not only on the store distributio
and properties, but also on the recent history represente
the amount of calcium released by the first stimulusni ,0 .

In the limit of low stimulus frequency (f !tmin
21 ), the pool

i is filled completely when each stimulation occurs, and ea
stimulus results in propagation to sitej. In the opposite limit
~high frequency,f @tmin

21 ), pool i never spends enough tim
in the refill state, and accordingly no stimulus will propaga
to site j.

The maximum frequency at which consecutive stim
can result in propagations of the excitation between the
pools can be estimated astmin

21 , with ni ,05ni ,min . This is the
case when the stimulation at sitei occurs always exactly
when ni ,05ni ,min . The amount of calcium in the storei at
the moment when the stimulation occurs can be calculate
a function of the amount released by the previous stimu
The resulting discrete map has a fixed point for a low f
quency of the stimulus, and shows one period doubling
furcation atf ;tmin

21 , when the fixed point becomes unstab
The period two solution corresponds to the case when c
secutive stimuli find the storei filled with different amounts
of calcium, one higher and the other lower than the fix
point value. After the release of the higher amount of c
cium the storei has to spend more time in the latent sta
before entering the refill state. The lower time spent in
refill state before the next stimulation allows the store
refill only up to the minimum value of the period two~stable!
solution. After the next stimulus the store spends less tim
the latent state, and thus more time in the refill state, refill
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up to the higher value and so on. If the distance between
storesi andj is chosen appropriately,ni ,min can be tuned@see
Eq. ~10!# between the minimum and the maximum values
the discrete map’s period two solution. In such excitat
period, doubling at the receiver storej will occur, as only
every other stimulus at sitei results in propagation to sitej.

Now we note that there exists a relationship between
cium wave propagation across a set of discrete stores
percolation. Given a distribution of stores, we can add f
mally a bond between each pair of stores that meets
propagation criterion~9!. Thus we obtain connected cluste
of stores; once the external stimulus triggers one store in
a cluster, the excitation will propagate as an avalanche to
the other stores that belong to it. Ifa is the typical length of
a bond the characteristic time for the excitation to propag
across it is given by

t0;
a2

D
. ~13!

The average number of stores that exist in a volumer max
d

is p5Nsr max
d , a dimensionless parameter that summari

all percolation-related properties of the store distribution.
the limit p!1 there are very few bonds and only very sm
clusters exist. This case is of no interest since no signal
propagate. The opposite limitp@1 corresponds to the con
tinuous limit, with typical distances between stores mu
smaller than the ranger max. This situation is described prop
erly by a system of partial differential equations.

Here we will investigate the intermediate casep;1. It
can be argued that in this casea;r max. If p is greater than
the percolation thresholdpc an infinite cluster of connecte
stores exists. Let us consider a stimulus that triggers on
its stores into the CICR state. The propagating wave w
behave differently at early times as opposed to late times
early times the fractal regime is observed. The average
tance to the firing stores~measured from the initially trig-
gered site! scales with time as

R;aS t

t0
D ñ

;jS t

tj
D ñ

, ~14!

wherej is the correlation length,tj is the characteristic time
needed by the signal to propagate to a distance on the o
of j (R;j at t5tj), and ñ is the graph dimension of th
percolating cluster@19#. The exponentñ is 0.885 ford52
and 0.735 ford53. We remark that in both casesñ,1, thus
in the fractal regimeR increases slower than linearly with th
time t. The fractal regime is observed as long asR!j or t
!tj .

At late timest@tj ~or R@j) the homogenous regime i
observed. In this regime one expectsR and t to be propor-
tional:

R;j
t

tj
. ~15!

The Eqs.~14! and ~15! can be combined into the scalin
form
he

f
n

l-
nd
-
e

de
ll

te

s
n
l
an

h

of
ll
t

is-

er

R;aS t

t0
D ñ

hS t

tj
D , ~16!

where the functionh describes the crossover between the t
regimes. From the behavior in the fractal regimeh(x);h0
for x!1. To obtain the correct exponent oft for the homog-
enous regime one needsh(x);x12 ñ for x@1.

In the homogenous regime the wave front travels a
constant velocity that can be estimated as

v;
a

t0
S j

aD 12 1/ñ

;
D

a S up2pcu
pc

D (1/ñ21)n

. ~17!

Heren is the exponent that relates the correlation length
the difference from the percolation thresholdpc :

j

a
;S up2pcu

pc
D 2n

. ~18!

In the presence of discrete stores the velocity is proportio
to the diffusion coefficientD, in contrast with the case of a
continuous distribution of stores.

If the store triggered initially belongs to a finite cluster th
wave will die out once it reaches all the sites of the co
nected cluster. As a consequence, below the percola
threshold only the fractal regime is observed.

Let us now investigate how the velocity of the wave fro
depends on the frequency of the stimulus. At low frequenc
the refill between successive stimuli is complete (ni ,0
'nmax) and all wave fronts are identical~assuming that the
initial conditions set by consecutive stimuli are the sam!.
Between consecutive stimuli the stores enter the refill st
the amount of stored calcium grows and thus bonds betw
pairs of stores are added, forming small connected clus
As more bonds are added the clusters grow and coalesce
once the percolation threshold is reached, the correla
length starts decreasing from the theoretically infinite va
at the percolation threshold towards the finite, presuma
small value that corresponds to completely filled stores.
the frequency increases the time spent in the refill state
lower thant r and the correlation length at the moment wh
the stimulations occur gets larger. Thus, because the e
nent ofj in Eq. ~17! is negative, the velocity decreases wi
frequency in the homogenous regime. As the frequency
creases further and fewer links have enough time to gr
we approach the percolation critical concentration of bon
~from above! and the diverging correlation lengthj gets big-
ger than the size of the domain considered. The crosso
from the homogenous to the fractal regime is observed.
nally more links are broken at an even higher frequency,
the wave does not propagate any more, as the grown clu
of sites falls under the percolation threshold.

III. SIMULATION RESULTS

To simulate the propagation of the excitation wave, ide
tical stores of calcium were placed randomly inside a squ
domain. All the stores are initially filled with the sam
amount of releasable calcium,nmax. While nmax has been
changed between different simulations, all the other para
eters were kept fixed. The simulation is started by trigger
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a store, located close to the center of the domain, into
CICR state. The current release will cause the stores loc
within a distance smaller thanr max to release also. The time
when the new releases will occur are calculated numerica
generating a list of future events and their correspond
times. The site that releases next is determined by analy
the list and the clock is advanced up to its release time.
release by the new site adds new elements in the list, and
process is repeated while the event list is not empty. All
sites that release enter the latent state. The moment whe
latent state ends and the refill state starts is calculated
this new event is also added to the list.

At high stored calcium concentration the correlati
lengthj is much smaller than the size of the domain and
homogenous regime is observed. Snapshots of such a ty
evolution are presented in Fig. 2. After a short transient tim
the wavefront approximates a circle that expands w
roughly constant radial velocity. For a smaller amount
stored calcium the correlation lengthj gets bigger than the
size of the domain, as the store distribution gets closer to
percolation threshold, and the fractal regime is obser
~Fig. 3!. The wavefront is very irregular and consists of pu
of calcium release that propagate along individualiz
branches of the connected cluster. The traveling puffs sp
the branch has a bifurcation and die when they reach the
of a branch.

The difference between the two typical patterns shown
Figs. 2 and 3 is illustrated in a more quantitative manne
Fig. 4, where the distance from the origin of the excitation
plotted as a function of the time when the excitation occ
at the respective store. Figure 4~a! corresponds to the ho
mogenous regime presented in Fig. 2, with the distance
the firing sites increasing linearly with the time when th
fire. On the other hand, in the fractal regime shown in Fig
two puffs that have just separated from each other will
propagate in general towards the radial direction, moreo
they may even move back towards the origin. As a result@see
Fig. 4~b!# the corresponding graph will show individualize
branches that correspond to different travelling puffs. T
fractal nature of the graph in Fig. 4~b! is reflected in the
nonlinearity between the linear and chemical distances,
ultimately in the graph dimensionñ @see Eq.~14!#. The ve-
locity at which the excitation propagates between two giv
stores has also been measured as a function ofnmax. The
two stores were chosen so that they are well inside the
main ~to avoid finite-size effects!, but also far enough from
each other. Then an excitation wave was started by se
one of the two stores in the CICR state. The velocity w
measured by recording the time when the second site fi
Figure 5 shows how the velocity increases with the amo
of releasable calcium. Plateaus of almost constant wave
locity are separated by discontinuities. The discontinuit
reflect the opening of a shorter path as a result of an
creased connectivity whenr max increases. The velocity in
creases slightly inside the plateaus, because a higher am
of releasable calcium translates into a slightly shorter pro
gation time t0 across each bond. This dependence is v
weak and has been neglected in Eq.~13!, however it has
been taken care of numerically. A similar pattern change
also seen in fluorescence imaging experiments done on
nopus oocytes injected with IP3 . At high concentration of
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IP3 regular circular waves similar to those in Fig. 2 are o
served, while if less IP3 is injected, individualized peaks o
free calcium concentration travel through the cytosol, rese
bling the simulation in Fig. 3. IP3 enhances the release o
calcium from stores by binding to specific sites and th
activating the calcium release channels@12#. An increased
IP3 concentration will increase the number of active stor
i.e., stores that can release calcium by CICR and thus c
tribute to the propagation of the calcium signal. Since
stores considered in our simulations are active the net ef
of adding more IP3 is to modify the store distribution by
adding more stores. AsNs increases the percolation param
eterp increases also, which above the percolation thresh
leads to a decrease of the correlation lengthj. In our simu-
lations we produced the same effect by modifyingnmax,
which in our algorithm is equivalent to modifyingNs . The
similarity between the pattern change seen experiment
and in the simulation is a strong argument that the propa
tion of calcium signals is related to percolation.

The same IP3-controlled qualitative behavior has bee
shown also in simulations performed by Bugrimet al. @18#,
which have considered a model with discrete stores of fin
volume and have solved numerically the partial-different
equation system that describes the calcium dynamics.
grim et al. @18# have shown the existence of a critical IP3
concentration under which the calcium wave does not pro
gate. The average propagation distance of abortive wa
diverges according to a power low near the critical conc
tration of IP3 :

Rp;~@ IP3#crit2@ IP3# !2a. ~19!

Since @ IP3#crit corresponds to the percolation thresholdpc
and, as discussed above,p increases with the concentratio
of IP3 , the equation above should have the same expone
the correlation length in Ref.@18#. Bugrim et al. obtained
from simulationsa'1.74, while the expected theoretic
value forn is 4/3.

The critical concentration of IP3 can be estimated from
the condition that the concentration of stores activated by3
equals the percolation threshold, orpactive5pc at @ IP3#
5@ IP3#crit . One can assume a typical Michaelis-Menten a
tivation by IP3 , namely,

pactive5ptotal

@ IP3#

@ IP3#1@ IP3#0
, ~20!

where ptotal is the total concentration of stores, of whic
pactive are activated by IP3 , and @ IP3#0 is the threshold ac-
tivation concentration~the concentration at which half of a
stores are activated by IP3). Thus the relation between th
critical IP3 concentration and the total concentration of sto
is

@ IP3#crit5
pc@ IP3#0

ptotal2pc
, ~21!

again in qualitative agreement with the results of Bugr
et al. @18#.
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FIG. 2. Formation of a circular wave in the homogenous regim
The wave is started by exciting one central store att50. Initially all
the stores are filled with the maximum amount of calcium,nmax.
The stores that have fired in the last 0.5 s are colored in black. L
gray is used to describe the excitable sites~in the refill state! and
dark gray to describe the latent sites. Parameters used: siz
the domain: 240mm; number of stores: 16 396;nmax/Kc

566.7 mm2 ~or p52.22); Vre f il l /nmax510 s21; D510.0mm2/s.
The images~a!–~c! are snapshots taken at equal time intervals o
s after the initial excitation in the center.~a! transient irregular
front; ~b!,~c! circular fronts propagating with constant radial velo
ity.
IV. CONCLUSIONS

In this paper excitable CICR in the presence of localiz
stores has been considered. Simulations for differ
amounts of releasable calcium show clearly a fractal reg
for low stored calcium and a homogenous regime for h
stored calcium concentrations, as percolation theory pred
The similarity with experimental results strongly suggest t

.

ht

of

2

FIG. 3. The fractal regime: irregular wavefront that persists
to the size of the domain. The parameters are as in Fig. 2, ex
nmax/Kc542.7 mm2 ~or p51.42) andVre f il l /nmax515.625 s21.
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percolation related aspects are very important in underst
ing the propagation of calcium signals.

Our results suggest a plausible mechanism for freque
encoded calcium signaling. The time interval between c
secutive signals controls the amount of calcium available
the new release, and thus the connected cluster across w

FIG. 4. Propagation of the wave front:~a! the homogenous re
gime; ~b! the fractal regime.
d

d-

cy
-
r
ich

the signal will propagate. A high frequency translates into
smaller region in which the calcium signal can propaga
The resulting signaling mechanism becomes very powerfu
instead of a single stimulation one considers the effect of
or more stimuli that occur in different regions of the cell.
biologically plausible distribution may have the stores org
nized in calcium circuits—well-defined paths of connect
stores forming ‘‘wires’’ that transmit the calcium signals b
tween different regions of the cell. The nodes of such a
cuit can play an important role in analyzing calcium sign
since this is where different signals interact. We will show
a following paper how specific distributions of stores in t
vicinity of a node can perform coincidence detection a
elementary logical operations on calcium signals.
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FIG. 5. Velocity dependence on stored calcium. Other para
eters as in Fig. 2.
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